
Spark	Basics	2

Processing math: 100%

Lazy	evaluation

We	can	combine	map	and	reduce	operations	to	perform	more	complex
operations.

Suppose	we	want	to	compute	the	sum	of	the	squares	

where	the	elements	
are	stored	in	an	RDD.

[Math	Processing
Error]

[Math	Processing	Error]

Create	an	RDD

In [2]: B=sc.parallelize(range(4))
B.collect()

Out[2]: [0, 1, 2, 3]

Sequential	syntax

Perform	assignment	after	each	computation

In [3]: Squares=B.map(lambda x:x*x)
Squares.reduce(lambda x,y:x+y)

Out[3]: 14

Cascaded	syntax

Combine	computations	into	a	single	cascaded	command

In [4]: B.map(lambda x:x*x)\
 .reduce(lambda x,y:x+y)

Out[4]: 14

Both	syntaxes	mean	the	same	thing

The	only	difference:

In	the	sequential	syntax	the	intermediate	RDD	has	a	name	
Squares
In	the	cascaded	syntax	the	intermediate	RDD	is	anonymous

The	execution	is	identical!

Sequential	execution

The	standard	way	that	the	map	and	reduce	are	executed	is

perform	the	map
store	the	resulting	RDD	in	memory
perform	the	reduce

Disadvantages	of	Sequential	execution

1.	 Intermediate	result	(Squares)	requires	memory	space.

2.	 Two	scans	of	memory	(of	B,	then	of	Squares)	-	double	the

cache-misses.

Pipelined	execution

Perform	the	whole	computation	in	a	single	pass.	For	each	element	of	B

1.	 Compute	the	square
2.	 Enter	the	square	as	input	to	the	reduce	operation.

Advantages	of	Pipelined	execution

1.	 Less	memory	required	-	intermediate	result	is	not	stored.
2.	 Faster	-	only	one	pass	through	the	Input	RDD.

Lazy	Evaluation

This	type	of	pipelined	evaluation	is	related	to	Lazy	Evaluation.	The	word
Lazy	is	used	because	the	first	command	(computing	the	square)	is	not
executed	immediately.	Instead,	the	execution	is	delayed	as	long	as
possible	so	that	several	commands	are	executed	in	a	single	pass.

The	delayed	commands	are	organized	in	an	Execution	plan

An	instructive	mistake

Here	is	another	way	to	compute	the	sum	of	the	squares	using	a	single
reduce	command.	What	is	wrong	with	it?

In [5]:

										1					1					1
	

C=sc.parallelize([1,1,1])
C.reduce(lambda x,y: x*x+y*y)

Out[5]: 5

getting	information	about	an	RDD

RDD's	typically	have	hundreds	of	thousands	of	elements.	It	usually
makes	no	sense	to	print	out	the	content	of	a	whole	RDD.	Here	are	some
ways	to	get	manageable	amounts	of	information	about	an	RDD

In [6]: n=1000000
B=sc.parallelize([0,0,1,0]*(n/4))

In [7]: #find the number of elements in the RDD
B.count()

Out[7]: 1000000

In [8]: # get the first few elements of an RDD
print 'first element=',B.first()
print 'first 5 elements = ',B.take(5)

first element= 0
first 5 elements = [0, 0, 1, 0, 0]

Sampling	an	RDD

RDDs	are	often	very	large.
Aggregates,	such	as	averages,	can	be	approximated	efficiently
by	using	a	sample.
Sampling	is	done	in	parallel	and	it	keeps	the	data	local.

In [9]: # get a sample whose expected size is m
m=5.
B.sample(False,m/n).collect()

Out[9]: [1, 0, 1, 0, 0, 0]

filtering	an	RDD

The	method	RDD.filter(func)	Return	a	new	dataset	formed	by	selecting

those	elements	of	the	source	on	which	func	returns	true.

In [10]: # How many positive numbers?
B.filter(lambda n: n > 0).count()

Out[10]: 250000

Removing	duplicate	elements	from	an	RDD

The	method	RDD.distinct(numPartitions=None)	Returns	a	new	dataset

that	contains	the	distinct	elements	of	the	source	dataset

The	number	of	partitions	is	specified	through	the	numPartitions
argument.	Each	of	this	partitions	is	potentially	on	different
machine.

In [11]: # Remove duplicate element in DuplicateRDD, we get distinct RDD
DuplicateRDD = sc.parallelize([1,1,2,2,3,3])
DistinctRDD = DuplicateRDD.distinct()
DistinctRDD.collect()

Out[11]: [1, 2, 3]

flatmap	an	RDD

The	method	RDD.flatMap(func)	is	similar	to	map,	but	each	input	item	can

be	mapped	to	0	or	more	output	items	(so	func	should	return	a	Seq	rather
than	a	single	item).

In [12]: text=["you are my sunshine","my only sunshine"]
text_file = sc.parallelize(text)
map each line in text to a list of words
print 'map:',text_file.map(lambda line: line.split(" ")).collect()
create a single list of words by combining the words from all of the lines
print 'flatmap:',text_file.flatMap(lambda line: line.split(" ")).collect()

map: [['you', 'are', 'my', 'sunshine'], ['my', 'only', 'sunshine']]
flatmap: ['you', 'are', 'my', 'sunshine', 'my', 'only', 'sunshine']

Set	operations

In	this	part,	we	explore	set	operations	including
union,intersection,subtract,	cartesian	in	pyspark

In [13]: rdd1 = sc.parallelize([1, 1, 2, 3])
rdd2 = sc.parallelize([1, 3, 4, 5])

1.	 union(other)
Return	the	union	of	this	RDD	and	another	one.

In [14]: rdd1.union(rdd2).collect()

Out[14]: [1, 1, 2, 3, 1, 3, 4, 5]

1.	 intersection(other)
Return	the	intersection	of	this	RDD	and	another	one.
The	output	will	not	contain	any	duplicate	elements,
even	if	the	input	RDDs	did.Note	that	this	method
performs	a	shuffle	internally.

In [15]: rdd1.intersection(rdd2).collect()

Out[15]: [1, 3]

1.	 subtract(other,	numPartitions=None)
Return	each	value	in	self	that	is	not	contained	in	other.

In [16]: rdd1.subtract(rdd2).collect()

Out[16]: [2]

1.	 cartesian(other)
Return	the	Cartesian	product	of	this	RDD	and	another
one,	that	is,	the	RDD	of	all	pairs	of	elements	(a,	b)
where	a	is	in	self	and	b	is	in	other.

In [17]: print rdd1.cartesian(rdd2).collect()

[(1, 1), (1, 3), (1, 4), (1, 5), (1, 1), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4), (2, 5), (3, 1), (3,
3), (3, 4), (3, 5)]

